Flavor Violation Tests of Warped/Composite SM in the Two-Site Approach Part II

Important Flavor Observables

Lijun Zhu

University of Maryland-College Park

November 6, 2008

arXiv:0810.1016 [hep-ph] with K.Agashe, A. Azatov

- 1 Flavor Structure in Two-site Approach
- 2 Important Flavor Observables
- 3 Other Flavor Observables
- 4 Conclusion

Flavor structure of Two-site model

- No flavor violation in elementary sector.
- Flavor anarchy in composite sector. (Composite site Yukawa couplings are of the same order and have no structure)
- Hierarchical mixing between elementary and composite sector generate hierarchical quark masses and CKM mixing angles.

Flavor violating Higgs coupling

Couplings between Higgs and quarks:

$$Y_{ij}^* H(\bar{q}_L^i d_R^j s_{qi} s_{dj} + \bar{Q}_L^i d_R^j s_{dj} + \bar{q}_L^i \tilde{D}_R^j s_{qi})$$

$$\Rightarrow m_{ij}^d = \frac{v}{\sqrt{2}} Y_{ij}^* s_{qi} s_{dj}$$

$$(1)$$

$$\Rightarrow D_{Lij} \sim s_{qi}/s_{q_i} \qquad ; \qquad D_{Rij} \sim s_{di}/s_{dj} \tag{2}$$

Flavor violating composite gluon coupling

Couplings between composite site gluon and down type quarks are diagonal but not universal in the quark basis before EWSB, thus leading to non-diagonal couplings after unitary rotation into quark mass eigenstates:

$$g_{*s}D_{L}^{\dagger}\begin{pmatrix} s_{q1}^{2} & 0 & 0\\ 0 & s_{q2}^{2} & 0\\ 0 & 0 & s_{q3}^{2} \end{pmatrix}D_{L}$$

$$\Rightarrow g_{*s}s_{qi}s_{qj}G_{\mu}^{*}\bar{q}_{L}^{i}\gamma^{\mu}q_{L}^{j}$$
(3)

$\Delta F = 2$ process: ϵ_K

Composite gluon mediates s, d mixing at tree level.

$$\Rightarrow C_{4K} \approx \frac{g_{*s}^2}{M_*^2} s_{q1} s_{q2} s_{d1} s_{d2} \approx \frac{g_{*s}^2}{M_*^2} \frac{2m_d m_s}{v^2 Y_*^2} \tag{4}$$

 Model independent bound (renormalized at 3 TeV): [UTfit Collaboration] [Csaki, Falkowski, Weiler, 2008]

$$\operatorname{Im} C_4 \stackrel{<}{\sim} \frac{1}{\left(\Lambda_F\right)^2}, \qquad \Lambda_F = 1.6 \times 10^5 \, \text{TeV}. \tag{5}$$

Assuming order one phase

$$\Rightarrow M_* \stackrel{>}{\sim} \frac{11g_{*s}}{Y_*} \text{TeV} \tag{6}$$

• g_{*s} can be obtained from matching in corresponding warped extra dimension model that explains Planck-weak hierarchy.

 $g_{*s} \approx 6$ (tree level matching)

 $g_{*s} \approx 3$ (loop matching without brane term), smallest g_{*s} allowed.

■ *Y** <?

Compare with warped extra dimension

$$Y_0 = aY_{KK}f(c_L)f(c_R) \tag{7}$$

$$C_{4 \text{ estimate}}^{5D}(M_{KK}) = \frac{\left(g_5\sqrt{k}\right)^2}{Y_{KK}^2 a^2} \frac{2m_s m_d}{v^2} \frac{1}{M_{KK}^2}$$
(8)

Bound on $M_{KK} \propto 1/a$.

β	а	$M_{KK}, g_{s*} = 3$	M_{KK} , $g_{s*}=6$
0	1.5	3.7 TeV	7.4 TeV
1(two-site)	1	5.5 TeV	11 TeV
2	0.75	7.3 TeV	14.6 TeV
∞ (brane)	0.5	11 TeV	22 TeV [Csaki, et. al. 2008]

Table: We fix the composite/KK Yukawa coupling $Y_{KK} = 6$.

Rare decay $b \rightarrow s \gamma$

- Provides upper bound on *Y*_{*}.
- Effective Hamiltonian

$$\mathcal{H}_{eff}(b \to s \gamma) = -\frac{G_F}{\sqrt{2}} V_{ts}^* V_{tb} [C_7(\mu_b) Q_7 + C_7'(\mu_b) Q_7' + \ldots]$$

$$Q_7 = \frac{e}{8\pi^2} m_b \bar{b} \sigma^{\mu\nu} F_{\mu\nu} (1 - \gamma_5) s; \quad Q_7' = \frac{e}{8\pi^2} m_b \bar{b} \sigma^{\mu\nu} F_{\mu\nu} (1 + \gamma_5) s$$
(9)

• C_7' is negligible in SM.

Heavy gluon contribution:

■ Generates operator $C_{7ii}^G \bar{d}_j \sigma^{\mu\nu} F_{\mu\nu} (1-\gamma_5) d_i$ (before EWSB), with

$$C_{7ij}^{G} \propto s_{q_i} g_{s*}^2 Y_{*ij}^d s_{d_j} \propto m_{ij}^d$$
 (10)

• After unitary rotation into quark mass eigenstates, no flavor violating dipole operator is generated, thus no contribution to $BR(b \to s\gamma)$

Higgs and heavy fermion contribution:

$$C_{7\,ij}^{H} \propto s_{q_i} Y_{*ik}^{d} Y_{*kl}^{d} Y_{*lj}^{d} s_{d_j} \tag{11}$$

it is not aligned with m_{ij}^d , leading to flavor violating dipole operators.

$$C_7^{b \to s \gamma}(M_*) \approx -\frac{5}{48} \frac{(Y_*)^2}{(M_*)^2} \frac{\sqrt{2}}{G_F}; \quad C_7^{\prime b \to s \gamma}(M_*) \approx -\frac{5}{48} \frac{(Y_*)^2}{(M_*)^2} \frac{\sqrt{2}}{G_F} \frac{m_s}{m_b \lambda^4}$$
 (12)

- $C_7^{\prime \text{new}}/C_7^{\text{new}} \approx 8$, different from SM.
- RG running from high to low scale suppress new contributions.
- Experiment: BR($b \to s \gamma$) = $(352 \pm 23 \pm 9) \times 10^{-6}$ [HFAG] Theory: BR($b \to s \gamma$) = $(315 \pm 23) \times 10^{-6}$ [Huber 2007]
- Allow 20% deviation from SM value

$$M_* \gtrsim (0.63) Y_* \text{ TeV}$$
 (13)

■ Combined with bound from ϵ_K

$$M_*$$
 $\gtrsim 2.6\sqrt{g_{s*}}$ TeV for $Y_* \approx 4.2\sqrt{g_{s*}}$
 ≈ 4.5 TeV for $g_{s*} \approx 3$
 ≈ 6.4 TeV for $g_{s*} \approx 6$ (14)

Other Flavor Observables

- Constraints from B meson mixing are weaker.
- Shift in Zbb coupling:

$$\frac{\delta g_{Z\bar{b}b}}{g_{Z\bar{b}b}} \approx \sum_{i=1}^{3} \left(\frac{Y_{*di3}}{Y_{*u33}}\right)^{2} \left(\frac{m_{t}}{M_{*}s_{u3}}\right)^{2} + \frac{1}{2} \left(\frac{m_{t}}{M_{*}s_{u3}}\right)^{2} \left(\frac{g_{*2}}{Y_{*U33}}\right)^{2}$$
(15)

gives similar bounds if no hierarchy between Y_*^u and Y_*^d .

Important Flavor Observables

■ Predict large time dependent CP asymmetry in $b \rightarrow s\gamma$ (S_{CP}) due to large new physics contribution to C_7 .

Conclusion

- There exists a correspondence between bulk Higgs scenario and two-site model.
- Two-site model gives a very simple approach to analyze flavor physics.
- **E**xist tension between ϵ_K and $b \to s\gamma$ (opposite dependence on Y_*).
- $\sim O(5)$ TeV composite scale could be consistent with flavor tests.
- **Expect large time dependent CP asymmetry in** $b \rightarrow s\gamma$.